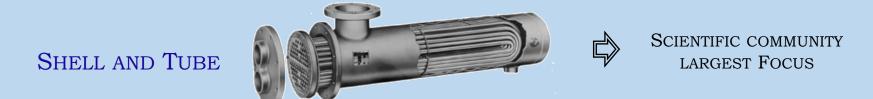
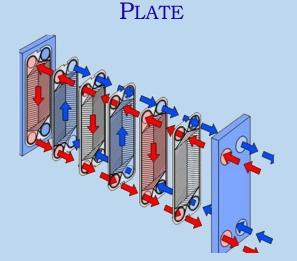


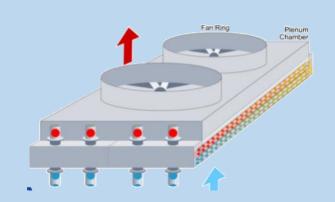
Globally Optimal Design of Double-Pipe Heat Exchanger Modular Units

Alice Peccini de Melo^a, Miguel Bagajewicz^b, André L.H. Costa^a


(a)Universidade do Estado do Rio de Janeiro (b) University of Oklahoma

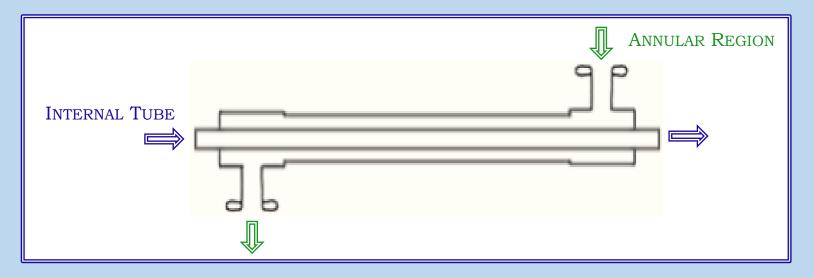
December 6, 2019

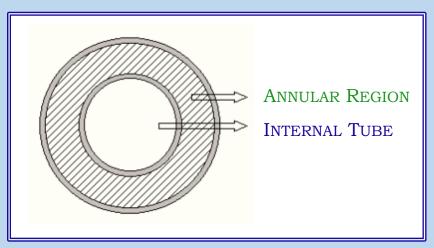



Most common heat exchanger in the industry

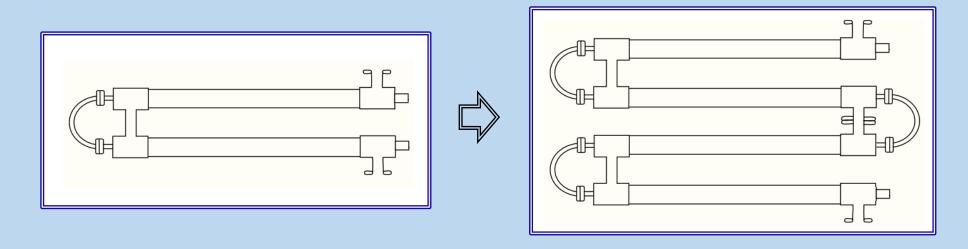
Other types of heat exchangers

DOUBLE PIPE


Double Pipe Heat Exchanger in the Chemical Industry


- Services of small magnitude (≤ 50m²);
- Large temperature intersection;
- Thermal services involving solids;
- Absence of stagnation regions;
- High pressure services;
- Flexibility to increase or reduce area;
- Multiplicity of operational alternatives;

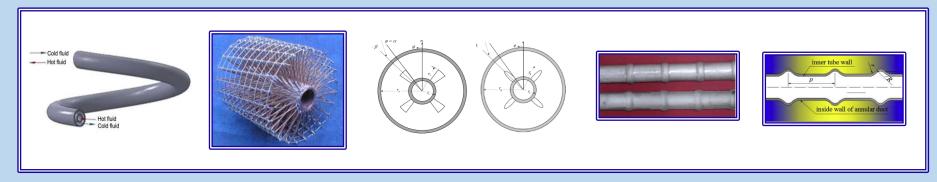
Double Pipe Heat Exchangers – Architecture

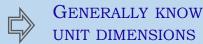


Double Pipe Heat Exchangers - Hairpins

HAIRPIN ASSOCIATION

Double Pipe Heat Exchangers – Examples





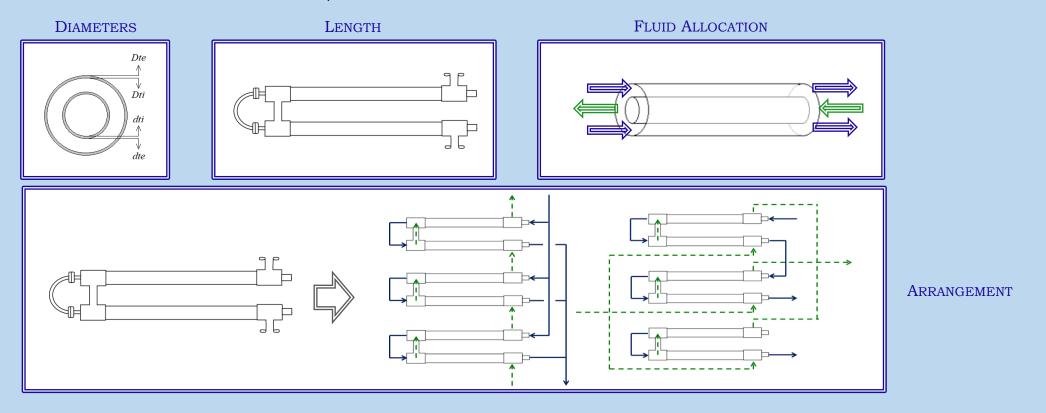
Double Pipe Heat Exchangers – Literature

Focus on heat transfer enhancement alternatives:

- Minority of projects aimed at reducing investment costs;
- Simplified approaches and few free design variables.

```
SÖYLEMEZ (2004): Ratio of diameters, length and fluid allocation known;

Decision variable: Inner tube diameter.
```

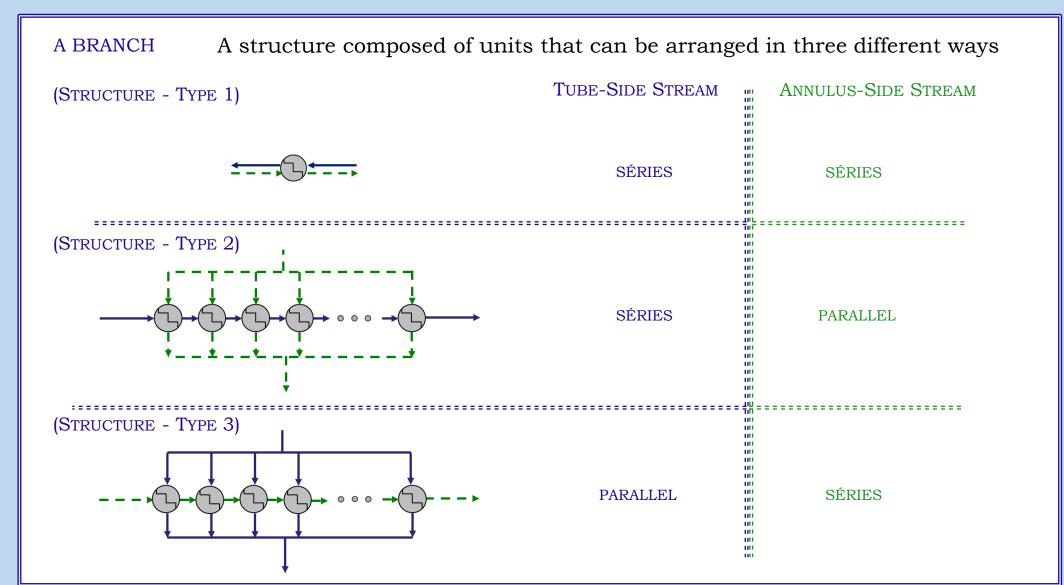

SWAMEE ET AL (2008): Length and fluid allocation known; Decision variables: Pipe diameters.

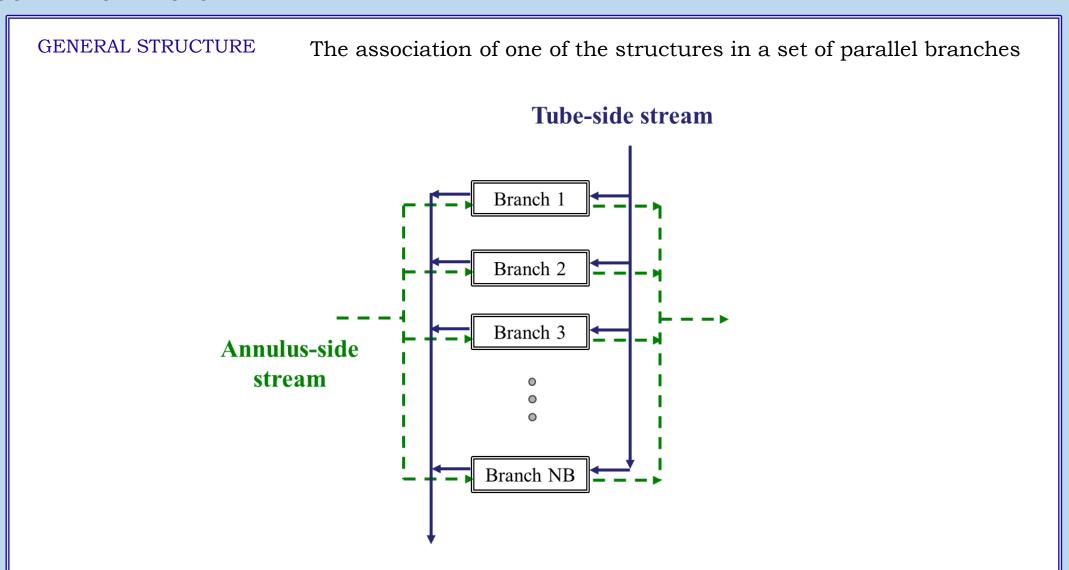
THIS WORK PROPOSAL

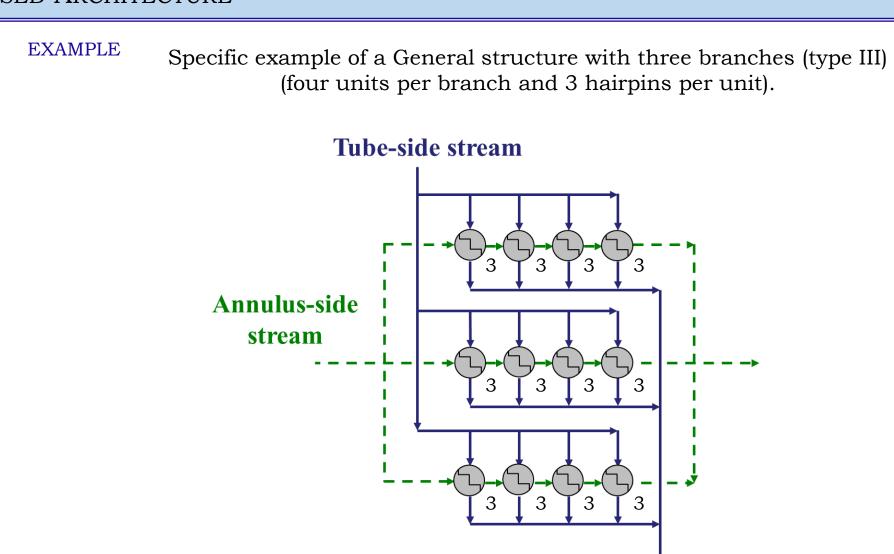
- Explore the modular characteristic of double pipe heat exchangers;
- Increase the number of decision variables;

■ Different flow regimes: Laminar, Transitional and Turbulent

■ Three proposed models: RAW MINLP, LINEAR-BINARY MINLP AND MILP







GENERAL IDEA

DECISION VARIABLES

Fluid allocation;

Pipe diameters;

Hairpin length;

N° of hairpins/unit;

N° of units in parallel for

each flow side/branch;

Number of branches

CONSTRAINTS

Structural;

Modelling;

Imposed Bounds;

OBJECTIVE FUNCTION

Heat transfer area minimization

OPTIMIZATION
Software GAMS 23.7

OBJECTIVE FUNCTION

Heat transfer area minimization

CONSTRAINTS

- Representation of geometric variables;
- Fluid allocation;
- Structural constraints;
- Thermo hydraulic modeling;
- Heat transfer;
- Velocity and pressure drop bounds.

GEOMETRIC VARIABLES REPRESENTATION

DISCRETE OPTIONS SELECTION

Diâmetros e comprimento

INTRODUÇÃO DE VARIÁVEIS BINÁRIAS

H										
Deperation	Line				DISCRETE OPTIONS					
Parameter 	Unit	1	2	3	4	5	6	7	8	9
NPS	in	1/2	3/4	1	1 1/4	1 ½	2	2 ½	3	3 ½
pdte	m	0.021	0.027	0.033	0.042	0.048	0.060	0.073	0.089	0.102

$$\sum_{sd=1}^{sdmax} yd_{sd} = 1$$

$$yd_{sd=3} = 1$$
$$yd_{sd\neq 3} = 0$$

$$yd_{sd\neq 3}=0$$

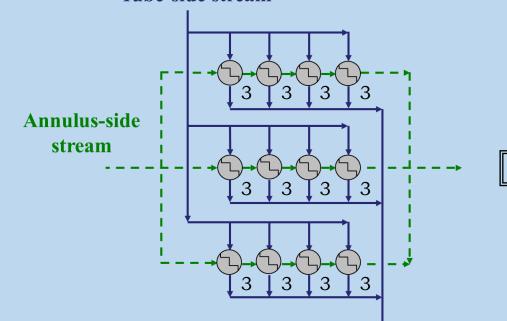
$$dte = \sum_{sd=1}^{sdmax} \widehat{pdte}_{sd} y d_{sd}$$

$$dte = 0.033 m$$

GEOMETRIC VARIABLES REPRESENTATION

STRUCTURE SELECTION

NB - Number of Branches


NPt/NPa - N° of units in parallel per branch for tube and annulus side

Nh – N° of hairpins per unit

$$NB = \sum_{SB=1}^{SBmax} \widehat{pNB}_{SB} \ yB_{SB}$$

$$NPt = \sum_{SE=1}^{SEmax} \widehat{pNE}_{SE} \ yPt_{SE} \qquad \sum_{SE=1}^{SEmax} yPt_{SE} = 1$$

Tube-side stream

THREE BRANCHES

$$NB = 3$$

TUBE-SIDE IN PARALLEL

$$NPt = 4$$

Annulus Side in Series

$$NPa = 5$$

THREE HAIRPINS PER UNIT

$$Nh = 3$$

GEOMETRIC VARIABLES REPRESENTATION

ADDITIONAL LOGICAL CONSTRAINTS

To ensure that if the tubeside has already more than one parallel passage, the annular side can be only arranged in series and vice versa:

$$yPt_{sE=1} + yPa_{sE=1} \ge 1$$

$$yPa_{SE=1} = 0 yPt_{SE=1} =$$

To force that the outer tube inner diameter is larger than the inner tube outer diameter one writes:

$$\sum_{SD=1}^{SDmax} \widehat{pDti}_{SD} y D_{SD} \ge \sum_{Sd=1}^{Sdmax} \widehat{pdte}_{Sd} y d_{Sd} + \varepsilon$$

FLUID ALLOCATION

$$yT_c + yT_h = 1$$

Cold Stram on
$$yT_c = 1$$
Tube-Side

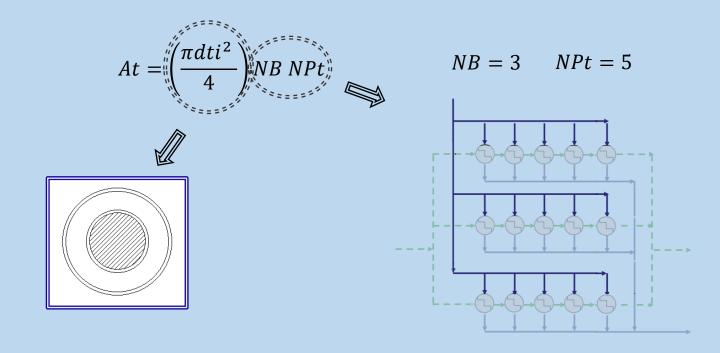
$$yT_h = 1$$

HOT STREAM ON TUBE-SIDE

ASSOCIATION OF STREAMS FLOWS AND PHYSICAL PROPERTIES WITH THEIR ALLOCATION

$$mt = \widehat{m_c} yT_c + \widehat{m_h} yT_h$$
 $\rho t = \widehat{\rho_c} yT_c + \widehat{\rho_h} yT_h$

$$ma = \widehat{m_c} y T_h + \widehat{m_h} y T_c \qquad \rho a = \widehat{\rho_c} y T_h + \widehat{\rho_h} y T_c$$



STRUCTURAL CONSTRAINTS

FLOW AREAS AND FLOW PATH LENGTHS

Depends on the selected layout

THERMOHYDRAULIC MODELING

DIMENSIONLESS NUMBERS AND VELOCITIES

$$dh = Dti - dte$$

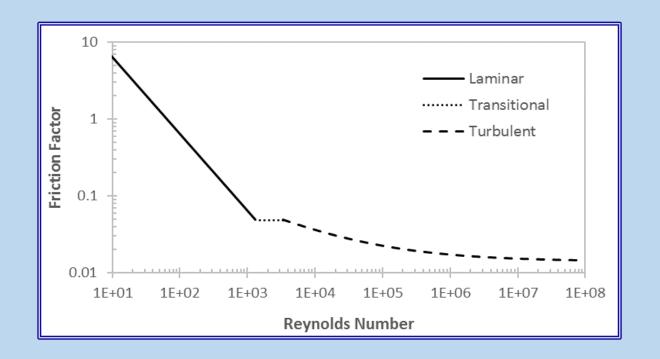
$$Prt = \frac{Cpt \ \mu t}{kt}$$
 $Ret = \frac{dti \ vt \ \rho t}{\mu t}$ $vt = \frac{(m \ t/\rho \ t)}{At}$

$$Prt = \frac{Cpt \ \mu t}{kt} \quad Ret = \frac{dti \ vt \ \rho t}{\mu t} \quad vt = \frac{(m \ t/\rho \ t)}{At} \qquad Pra = \frac{Cpa \ \mu a}{ka} \quad Rea = \frac{dh \ va \ \rho a}{\mu a} \quad va = \frac{(m \ a/\rho \ a)}{Aa}$$

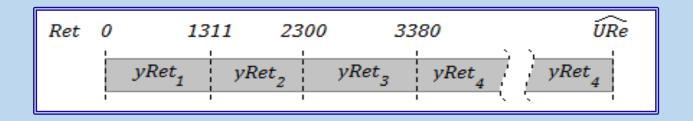
PRESSURE DROP - DARCY-WEISBACH

$$\Delta Pt = \rho t ft \frac{Lt}{dti} \frac{vt^2}{2}$$

$$\Delta Pa = \rho a f a \frac{Lt}{dh} \frac{va^2}{2}$$


FRICTION FACTORS AND NUSSELT NUMBERS

Regime switching


THERMOHYDRAULIC MODELING

THERMOHYDRAULIC MODELING

$$Ret \le 1311 \ yRet_1 + 2300 \ yRet_2 + 3380 \ yRet_3 + \widehat{URe} \ yRet_4$$

 $Ret \ge 1311 yRet_2 + 2300 yRet_3 + 3380 \ yRet_4 + \varepsilon$

$$\sum_{sRet=1}^{sRetmax} yRet_{sRet} = 1$$

$$ft = ft^{lam}yRet_1 + ft^{tran}(yRet_2 + yRet_3) + ft^{turb}yRet_4$$

HEAT TRANSFER

COEFFICIENTS

$$t = \frac{Nut \ kt}{dti} \qquad ha = \frac{Nua \ ka}{dh}$$

$$U = \frac{1}{\frac{1}{ht}\frac{dte}{dti} + Rft\frac{dte}{dti} + \frac{dte\ln\left(\frac{dte}{dti}\right)}{2ktube} + Rfa + \frac{1}{ha}}$$

RATE

$$\widehat{Q} = UA_{req}\widehat{\Delta Tlm} \, F$$

$$F = 1 + \sum_{SE=2}^{SEmax} \sum_{SE'=2}^{SEmax} \left\{ yT_{c} \left[yPt_{SE} \left(\widehat{pF}_{h,SE} - 1 \right) + yPa_{SE'} \left(\widehat{pF}_{c,SE'} - 1 \right) \right] + yT_{h} \left[yPt_{SE} \left(\widehat{pF}_{c,SE} - 1 \right) + yPa_{SE'} \left(\widehat{pF}_{h,SE'} - 1 \right) \right] \right\}$$

$$A \ge \left(1 + \frac{\hat{A}_{exc}}{100}\right) A_{req}$$

$$A = \pi$$
 dte Lu NB NPt NPa

VELOCITY AND PRESSURE DROP BOUNDS

$$vt \ge \widehat{v}t_{min}$$

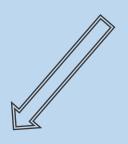
$$vt \le \hat{vt}_{max}$$

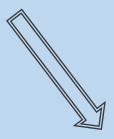
$$va \ge \widehat{va}_{min}$$

$$va \le \widehat{va}_{max}$$

$$\Delta Pt \leq \widehat{\Delta P_c}_{disp} y T_c + \widehat{\Delta P_h}_{disp} y T_h$$

$$\Delta Pa \leq \widehat{\Delta P_c}_{disp} y T_h + \widehat{\Delta P_h}_{disp} y T_c$$




EVOLUTION OF THE PROPOSED MODEL

RAW MINLP

Mixed Integer Nonlinear Programming

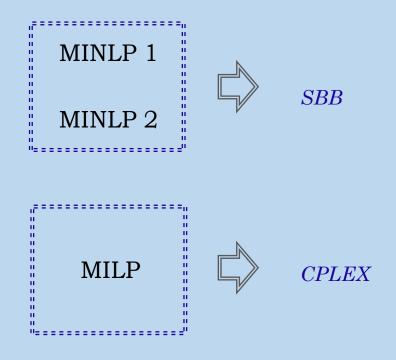
MATHEMATICAL TRANSFORMATIONS

LINEAR-BINARY MILP

Mixed Integer Nonlinear Programming

- Non-linearity restricted to continuous variables;
- Better resolution for Outer Approximation (OA).

MILP.


Mixed Integer Linear Programming

- Linear constraints and objective function;
- Global optimality guaranteed.

SOLVERS AND COMPUTER

CPU Intel Core i7-6700 (16GB RAM)

MINLP – INITIAL ESTIMATES REQUIRED

Variable	Initial Estimate		
Inner tube diameter selection	$yd_3 = 1$		
Stream allocation	$yT_c = 1$		
Range of Reynolds identification	$yRet_4 = yRea_4 = 1$		
Range of Nusselt identification	$yNut_2 = yNua_2 = 1$		
Variable	Initial Estimate		
Length of one unit	$Lh = \frac{Lh_{lo} + Lh_{up}}{2}$		
Reynolds number*	$Rex = \frac{Rex_{lo} + Rex_{up}}{2}$		
Nusselt number*	$Nux = \frac{Nux_{to} + Nux_{up}}{2}$		
Seider &Tate Nusselt number*	$Nux^{S\&T} = \frac{Nux_{lo}^{S\&T} + Nux_{up}^{S\&T}}{2}$		

PROBLEM DIMENSION

	Parameter	Number of discrete options	
	\widehat{pNB}_{sB}	6	-
	\widehat{pNE}_{sE}	8	
	\widehat{pL}_{sL}	2	
	\widehat{pdte}_{sd}	4	
	\widehat{pDte}_{sD}	4	-
Problem Formulation	N° of constraints	N° of variables	Processing Time (s)
MINLP 1	106	135	12,5
MINLP 2	282	191	15,2
MILP	869.337	205.926	604,3

RESULTS

- Successful validation with literature results in terms of modelling.
- Improved results compared to commonly applied trial and verification procedures (up to 20% area reduction)
- Flexibility between different flow regimes and structural flexibility in response to imposed bounds successfully achieved.
- Both MINLP approaches achieve locally optimum results, sometimes with a difference of 50% between both results. No pattern
 for either of them achieving better solutions than the other was found.
- Due to the increase in the number of variables and constraints in the Linear-Binary MINLP approach its processing time is a
 bit larger than for the Raw MINLP approach.
- The MINLP solutions can also be used as a initial estimate for BARON, a global solver, and can reduce BARON computation effort significantly (up to 90%).
- The MILP approach guarantees global optimality and is not dependent on initial estimates, however it requires a much greater processing time, and can show memory limitation issues depending on the number of discrete variables considered, which are being further explored.